5,796 research outputs found

    Robust moving horizon H∞ control of discrete time-delayed systems with interval time-varying delays

    Get PDF
    In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC) is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI) based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method

    Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?

    Full text link
    The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J=2-1 emission obtained with the 10~m submillimeter telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J=2-1 to J=1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations result from the modulation of velocities and the beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes are likely common features in molecular clouds that are sub-Alfvenic and may explain low column density, cirrus-like features similarly aligned with the magnetic field observed throughout the interstellar medium in far-infrared surveys of dust emission.Comment: 11 pages, 4 figures. Accepted for publication in MNRA

    The contrasting oceanography of the Rhodes Gyre and the Central Black Sea

    Get PDF
    The Rhodes Gyre, a prominent feature of the oceanography of the eastern Mediterranean, is modelled as a vertical, continuous flow, cylindrical reactor illuminated during the day at its upper end. If the Gyre is supposed to be in a steady state whilst the concentrations, C, of a chemical are being measured, the nett rate of formation or consumption of the chemical is given by -w d C/d z + u d C/d r, where w is the upward velocity of the water in the vertical, z , direction and u is the velocity of the water in the radial, r, direction. The behaviour of w and u is analysed to show that the Gyre may be used as a field laboratory in which rates of chemical change may be derived from depth profiles together with values of the surface velocities of the Gyre waters. In contrast, the central Black Sea is modelled as an ideal, strongly stratified sea in which the nett rates of formation or consumption of chemicals under steady state conditions are given by Ds d2C/ds 2, where s is the water density and Ds is an eddy diffusion coefficient. Computations reveal that, given better knowledge of its eddy diffusion coefficients, the Black Sea can also be treated as a field laboratory where rates of reaction mediated by bacteria may be derived from depth profiles

    Dissolution kinetics and mechanism of pandermite in acetic acid solutions

    Get PDF
    In this study, the dissolution kinetics and mechanism of pandermite mineral was investigated using a batch reactor employing the parameters of particle size, acid concentration, solid/liquid ratio, stirring speed and reaction temperature. From experimental data, it was determined that the conversion rate of pandermite to boric acid was increased with decreasing particle size, solid/ liquid ratio and increasing reaction temperature. Conversion rate increased up to 3 M, acid concentration then decreased with increasing acid concentration.It was observed that there was no important effect of stirring speed on the dissolution rate. Furthermore, it was observed that the dissolution mechanism was dependent on acid concentration due to restriction of dissolution in acetic acid solutions. The dissolution rate of pandermite mineral in acetic acid solution was examined according to homogeneous and heterogeneous chemical reaction model. It was determined from graphical and statistical methods that the reaction kinetics fitted to model in the form of first order pseudo homogeneous model [- ln (1 - X)] = kt and activation energy for the dissolution process was found to be 28.496 kj/mol. A mathematicalmodel, which indicated the dissolution process was established

    Simulated Performance of a Renewable Energy Technology – Heat Pump Systems in Semi-Arid California Greenhouses

    Get PDF
    In addition to the labor, energy and water consumption are the two main cost drivers in current greenhouse systems. Consequently, considerable effort is expended to conserve energy and water, and look for alternative energy sources, especially environmentally friendly renewable energy sources and technologies. Greenhouses in hot and arid regions also require large quantities of water for irrigation. Using proper technologies and environmental management systems can significantly change the energy and moisture dynamics of greenhouse production systems. This study aims to focus on reducing natural gas, electricity, and water consumption in semi-arid California greenhouses introducing renewable energy heat pump technologies to both open and confined greenhouses in California. The confined system has no external aeration and has no need for further water supply. It has a great potential to reduce the demand for natural gas, the load on the power grid, and the demand for irrigation water in greenhouse operations. It also allows plant protection without using chemical insecticides and the accumulation of carbon dioxide without aeration losses

    Pulsed Beam Tests at the SANAEM RFQ Beamline

    Full text link
    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority's (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.Comment: 6 pages, 6 figures. Proceedings of the International Particle Accelerator Conference 2017 (IPAC'17), May 14-19, 2017, TUPAB015, p. 134

    First detection of water vapor in a pre-stellar core

    Get PDF
    Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than Helium are expected to freeze-out onto dust grains, and the ortho:para H2 ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5x10^{-6} Msun) can be maintained by Far-UV photons locally produced by the impact of galactic cosmic rays with H2 molecules. Such FUV photons irradiate the icy mantles, liberating water wapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.Comment: The Astrophysical Journal Letters, in pres

    An overview of medical image processing methods

    Get PDF
    Since human life is worthier than all things, efforts on virtual animation and visualization of human body’s viscera, without surgical interference to diagnose a disease is very important. Recently, modern medical instruments are able to produce views which can be used for better diagnoses and accurate treatment. Various standards were formed regarding these instruments and end products that are being used more frequently everyday. Personal computers (PCs) have reached a significant level in image processing, carried analysis and visualization processes which could be done with expensive hardware on doctors’ desktops. The next step is to try to find out proper solutions by software developers andengineers that help doctors to make decision by combining opportunities in these two scientific areas. The objective of the present study is to construct 3D models and present it to users on screen in personal computers by using data acquired from tomography and magnetic resonance instruments. In order to realize this objective, developing software is aimed. In the second and third sections, the datastructures and processing of 3D volumetric data in digital format, 3D visualization techniques and theoretical subjects about methods and algorithms used are explained. In the forth section, explanations on developing a software package for the realization of the objective of the study, its usage and information about software development tools used are given. In the last section, the determinations made at the end of trials in this study, difficulties met and recommendations obtained in the light of the trial results are presented

    Could conscious sedation with midazolam for dental procedures be an alternative to general anesthesia?

    Get PDF
    Aim: The aim of our study was to evaluate the likelihood that conscious sedation (CS) with intravenous midazolam could become an alternative modality to general anesthesia (GA) for dental procedures.Materials and Methods: In our study, 58 and 47 American Society of Anesthesiologists (ASA).1 pediatric patients, aged 2.12 (mean 6) years, underwent dental procedures and minor oral surgical procedures under GA and CS with intravenous midazolam, respectively. The two groups were evaluated in terms of vital signs, duration of the treatment procedure, patient behavior, and the treatment comfort experienced by the physicians.Results: The oxygen saturation level was significantly lower (GA: 99.0 } 0.30, CS: 98.4 } 1.02; P < 0.001) and the duration of the treatment procedure was significantly shorter (P < 0.001) in the sedation group compared with the GA group. The physicians encountered various difficulties during implementation of the treatment strategy in cases wherethey used CS. Minor oral surgical procedures and tooth extraction  processes requiring no saline irrigation, however, could be performed successfully under CS.Conclusions: In cases requiring multiple dental management issues, the sedation method was not found to be a useful alternative to GA.Key words: Conscious sedation, general anesthesia, pediatric dentistr

    Body sizes of the javelin horses

    Get PDF
    • 

    corecore